Amino acid substitutions can influence the natural killer (NK)-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by "group 2" or "group 1" NK clones
نویسندگان
چکیده
Natural killer (NK) cells have been shown to express a clonally distributed ability to recognize HLA class I alleles. The previously defined NK clones belonging to "group 1" recognize HLA-C*0401 (Cw4) and other HLA-C alleles sharing Asn at position 77 and Lys at position 80. Conversely, the "group 2" NK clones recognize HLA-Cw*0302 (Cw3) and other HLA-C alleles characterized by Ser at position 77 and Asn at position 80. We assessed directly the involvement of these two residues in the capacity of NK cell clones to discriminate between the two groups of HLA-C alleles. To this end, Cw3 and Cw4 alleles were subjected to site-directed mutagenesis. Substitution of the amino acids typical of the Cw3 allele (Ser-77 and Asn-80) with those present in Cw4 (Asn-77 and Lys-80) resulted in a Cw3 mutant that was no longer recognized by group 2 NK cell clones, but that was recognized by group 1 clones. Analysis of Cw3 or Cw4 molecules containing single amino acid substitutions indicates roles for Lys-80 in recognition mediated by group 1 clones and for Ser-77 in recognition mediated by group 2 clones. These results demonstrate that NK-mediated specific recognition of HLA-C allotypes is affected by single natural amino acid substitutions at positions 77 and 80 of the heavy chain.
منابع مشابه
Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules
Recognition of major histocompatibility complex class I molecules by natural killer (NR) cells leads to inhibition of target cell lysis. Based on the capacity of different human histocompatibility leukocyte antigen (HLA)-C and HLA-B molecules to inhibit target cell lysis by NK lines and clones, three NK allospecificities have been defined: NK1 and NK2 cells are inhibited by different HLA-C allo...
متن کاملThe Influence of Perforin Expression on the Sensitivity of LAK/NK Killing Against Various Tumor Target Cells
Background: Perforin is known to be important in cytolytic activity mediated by natural killer (NK) cells. Objective: To study the relationship between the efficiency of NK and lymphokine-activated killer (LAK) cells activity, and the expression of perforin and HLA class I molecules. Methods: LAK cells were generated by in vitro culturing of human peripheral blood lymphocytes (PBLs) in the ...
متن کاملReview of NKG2D function and its related ligands: review article
The natural killer group 2D (NKG2D) is a transmembrane protein and a member of the CD94/NKG2 family of C-type lectin-like receptors. NKG2D is encoded by the KLRK1 gene, which is located in the NK-gene complex (NKC) placed on chromosomes 6 and 12 in mice and humans, respectively. NKG2D forms a homodimer structure and binds through ectodomains with its related ligands. Each of its monomers consis...
متن کاملExpression of HLA-C molecules confers target cell resistance to some non-major histocompatibility complex-restricted T cells in a manner analogous to allospecific natural killer cells
Specific HLA molecules have recently been shown to confer target cell resistance to lysis by some CD3- natural killer (NK) cells. For certain NK clones, resistance is governed by two specificities (NK1 and NK2) that are associated with particular HLA-C alleles: in general, target cells expressing Cw1, Cw3, Cw7, or Cw8 are susceptible to NK1 but resistant to NK2 clones, whereas target cells expr...
متن کاملDirect binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition.
Cytotoxicity of human NK cells is under negative control of killer cell Ig-like receptors (KIR) specific for HLA class I. To determine the specificity of five KIR containing two Ig domains (KIR2D), direct binding of soluble recombinant KIR2D to a panel of HLA class I transfectants was assayed. One soluble KIR2D, derived from an inhibitory receptor with a long cytoplasmic tail (KIR2DL1), bound t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 182 شماره
صفحات -
تاریخ انتشار 1995